Two-year multi-disciplinary Master’s programme
Cognitive Neuroscience
change perspective
Radboud University
Gaining new and exciting insights

Radboud University is one of the leading academic communities in the Netherlands. Our top-flight education and research takes place in modern buildings with state-of-the-art facilities, located on a beautiful, green campus.

We are a close-knit community where academics from different faculties – thanks to being walking-distance from each other – often work together in cross-disciplinary teams. Therefore, as a Master’s student at Radboud University, you will not only be able to converse with your fellow students, but also with students from other programmes, teachers, professors, and top-notch scientists. These meetings will stimulate you to take a fresh look at things and change your perspective. In turn you, as an international student, can stimulate others to change their perspective.

The strength of our university lies in its personal approach. Our Master’s students receive individual guidance from top researchers. Students’ studies are also directly integrated with the work done at the university’s 14 research institutes – a number of which are top in their field. This offers unique opportunities to undergraduates, postgraduates and doctoral candidates alike.

Gain a diploma from the Best Traditional University in the Netherlands

Radboud University is in the top one percent of universities in the world. An annual survey among all university students in the Netherlands has shown that between 2010 and 2017, students at Radboud University were the most satisfied with their university. The survey included aspects such as the quality of education, the guidance provided by teachers, and study facilities. In 2019, Radboud University was once again voted the number one traditional university in the Netherlands. As an example of excellence, the 2010 Nobel Prize in Physics was awarded to a professor and PhD student connected to Radboud University. These are some of the reasons why an increasing number of students and scientists from around the world choose to study and work in Nijmegen. The University is constantly strengthening the international character of its programmes. The diverse backgrounds of those who study and teach at the University help our common objective: to achieve the highest possible quality in education and research.

Live in a true student city

You will be based in a true university city: of its 170,000 inhabitants, some 30,000 are students. Students appreciate the city’s attractive, green surroundings and its many venues for relaxation and entertainment. The cultural centre LUX is the largest art house cinema in the Netherlands and also offers theatre, music, debate, and multimedia. The oldest city in the Netherlands dates from Roman times when its name was Noviomagus (New Market). Situated close to the German border, Nijmegen lies on the banks of the river Waal, a branch of the Rhine. It is a friendly and safe place to live and study.

Ranking and awards 2017

• Best Traditional University in the Netherlands 2019, 2010 - 2017, according to students in information guide ‘Keuzegids universiteiten’
• Nobel Prize for Physics awarded to two professors connected to Radboud University in 2010
• 123 in the Times Higher Education Rankings 2018
• 205 in the QS World University Rankings 2018
• 115 in the Shanghai Rankings 2018

For more information on rankings and awards, please have a look at www.ru.nl/masters/rankings

A warm welcome for international students

As a visiting student, the International Office of Radboud University will help you with practical matters such as finding housing, arranging a visa, and medical insurance. In addition, it organizes many activities that will make you feel at home in the city and bring you into contact with its students and its other inhabitants. For more information: www.ru.nl/internationaloffice

Studying in Holland

There are many reasons for choosing to study in the Netherlands:
• Dutch higher education has a strong reputation worldwide thanks to a national system of strict regulation and quality assurance.
• Dutch scientific research is rated disproportionately high internationally.
• An international environment in which to study.
• The Dutch speak good English, so it is easy to communicate.
• The Netherlands is a multicultural society and a gateway to Europe.
• Education in the Netherlands is not free, but tuition fees are very reasonable. The annual fee for a degree programme at a Dutch higher education institution starts at €2083 (2019-2020) for students from the European Economic Area (EEA). The costs of programmes or courses for students coming from outside the EEA are generally higher (€12,645 2019-2020). Additional expenses will include housing and other everyday costs.
Discover the human brain in action

Cognitive neuroscience studies the cognitive and neural basis of mental processes such as perception, action, language, attention and memory. This relatively young discipline seeks to unravel the workings of the human brain. What happens in our brains when we do what we do? How is this fascinating, unbelievably complex ‘micro cosmos’ inside our skulls organised? How do those billions of nerve cells collaborate in an organ no bigger than half a football?

Thanks to brain imaging – a technology for measuring and depicting brain activity – scientists are now able to observe the human brain in action. In their research, cognitive neuroscientists are therefore no longer dependent on patients with brain damage if they want to ascertain which parts of the brain are involved in certain tasks and functions. Nowadays, it is also possible to conduct carefully controlled experiments on healthy people using state-of-the-art imaging techniques. Because of this revolutionary development, cognitive neuroscience has gained tremendous momentum. Nowadays, we have learned a lot about how individual brain regions operate to partly accomplish real-world computations, but we still need a much better understanding of how the brain operates at the network level. Also, it has been suggested that many diseases (such as ADHD and schizophrenia) occur - in the young (like in intellectual disability, autism and ADHD) or during aging (like in Alzheimer’s disease)? Due to the breadth and depth of our work, integrating results from molecular, cellular, animal and neuroimaging studies with work on neurocognitive and behavioural measures, you will be able to learn the state-of-the-art from leading scientists in the field of Plasticity and Memory.

Asli Ozyurek
Centre for Language Studies, Donders Centre for Cognition

Language lies at the heart of what makes us human and probably played a key role in the evolutionary survival of our species. Our amazing capacity to learn, produce and understand language was extraordinary something that we often take for granted. But there are many complexities hiding just below the surface of our everyday conversation that we do not yet fully understand.

Researchers in the Language and Communication theme at the Donders Institute have a leading role in the field, hosting the greatest concentration in the world of researchers working on language and combining interdisciplinary expertise with the newest methods to understand the complexity of our language faculty. To achieve this, we take a multidisciplinary and multimodal (including speech, gesture and sign) approach, bridging language research from the study of molecules all the way to language structure and to the study of language use in context, interaction and shaped by culture. For example, at the neurobiological level we question how the human language capacity is rooted and evolved, in the language-ready human brain and its genetic makeup. At the psychological level, we explore the mental operations that underlie our ability to produce and comprehend language, in our native or non-native languages and the role of individual differences in this process. At the linguistic level, we try to understand what is common and different across languages and how children learn different languages in a relatively short time.

There is still much to discover at each of these levels and the relations between them. Come to Nijmegen if you like to learn about the newest approaches and methods to language research. It is the place to be!

Alan Sanfey
Donders Centre for Cognitive Neuroimaging

How do we manage to negotiate our way through very complex physical and social environments, adapting to these environments in order to fulfill our goals? The research specialisation of Perception, Action, and Control is concerned with understanding the neural and cognitive structures of the brain that make these feats possible. More precisely, we study how the integration between perception and action is achieved, controlled, and exploited during sensorimotor integration, adaptive decision making, and complex social interactions. We consider multiple levels of biological organisation, from genes to neuromodulators, from single neurons to brain circuits, from individual organisms to multiple interacting agents. At each of these levels, we are also concerned with how the perception-action cycle is altered in neurological and psychiatric populations. This interdisciplinary and multi-level approach offers students the opportunity to experience different analytical and theoretical perspectives, providing a unique research profile in the Dutch and European landscape of cognitive neuroscience.

A unique multi-disciplinary Master’s programme

Are you interested in the human brain? Would you like to conduct research into the workings of the brain and join an enthusiastic, international group of top researchers? Then the Donders Graduate School is the place to be, with its multi-disciplinary Master’s programme in Cognitive Neuroscience (MSc CNS). This selective Master’s programme takes two years and is, of course, of a scientific orientation. There is a strong emphasis on experimental research. After all, what counts is hands-on research experience. This Master’s programme is unique in the Netherlands.

The Master’s programme in Cognitive Neuroscience primarily focuses on training talented Bachelor’s students to become excellent researchers. Research institutes and businesses around the world need highly qualified and motivated researchers. Moreover, since cognitive neuroscience is a rather young discipline, there is still a lot to be explored and many questions that need to be answered. Therefore, there is plenty of room for new discoveries!

Close cooperation on campus

The Master’s programme in Cognitive Neuroscience is a multi-disciplinary programme closely involving internationally renowned scientists from several faculties and research institutes on campus. The Nijmegen research in Cognitive Neuroscience has therefore gained national and international recognition for its high quality. In the Master’s programme you will attend lectures by these top scientists. They will also supervise your practical training and the writing of your Master’s thesis in your second year.

The following faculties participate in the MSc programme:
- Faculty of Social Sciences
- Faculty of Arts
- Faculty of Science, Mathematics & Computing Science
- Faculty of Philosophy
- Faculty of Medical Sciences Radboudumc

The following institutes are responsible for the practical implementation of the MSc-programme:
- Donders Institute for Brain, Cognition and Behaviour (Donders Graduate School):
 - Donders Centre for Cognition (DCC)
 - Donders Centre for Medical Neuroscience (DCMNI)
 - Donders Centre for Neuroscience (DCN)
 - Donders Centre for Cognitive Neuroimaging (DCCN)
- Centre for Language Study (CLS)
- Max Planck Institute for Psycholinguistics (MPI)

Most of us can cycle through a busy street quite effortlessly. When doing so, our brain receives massive amounts of information, little of which is relevant for the task at hand. At the same time we need to balance our bikes and find our way to our destination. Even such a seemingly routine everyday task engages most of (if not) the entire brain. In recent years, we have learned a lot about how individual brain regions operate to partly accomplish real-world computations, but we still need a much better understanding of how the brain operates at the network level. Also, it has been suggested that many disorders such as ADHD and schizophrenia must be understood as malfunctioning of the brain network. As such, understanding the brain as a network is one of the greatest challenges in neuroscience. Making progress in this field requires an interdisciplinary approach, combining the knowledge gained using different techniques with sound theories. We need to understand how groups of neurons communicate with each other whether the neurons are merely a hair away from each other or located in distinct portions of the brain; this is the main focus of research in the Neural Computation and Neurotechnology specialisation. Given the multidisciplinary groups and the collaborative spirit at the Donders Institute, we are in a unique position to better understand how the brain operates as a network and apply this knowledge to understanding cognition and disorders.

Indira Tendolkar
Donders Centre for Medical Neuroscience

The brain is our most complex organ and directs the orchestra of other organs in our body. Even with so many functions, there is still an incredible flexibility to the brain’s functioning and organisation. This fascinating organ must be studied from neurodevelopment to old age, and all the way from molecules to minds to population. Among the questions that keep us busy are how the brain acquires its abilities of learning and memory, how genetic predisposition and environment contribute to our cognitive abilities, where the neural substrates of those abilities are localized and how they are used. And what goes wrong under stress or when mental disorders occur - in the young (like in intellectual disability, autism and ADHD) or during aging (like in Alzheimer’s disease)? Due to the breadth and depth of our work, integrating results from molecular, cellular, animal and neuroimaging studies with work on neurocognitive and behavioural measures, you will be able to learn the state-of-the-art from leading scientists in the field of Plasticity and Memory.

Tansu Celikel
Donders Centre for Neuroscience

www.ru.nl/masters/cns
Four Master’s specialisations

The MSc CNS programme offers four specialisations which correspond one-to-one with the four research themes of the Donders Institute: (1) Language and Communication; (2) Perception, Action and Control; (3) Plasticity and Memory, and (4) Neural Computation and Neurotechnology. Each specialisation has its own set of seven core courses and a student has to complete 30EC of these courses to complete her/his specialisation training. The entire programme is in English and the specialisations share a common ground in the set of general core courses mandatory for all students.

Four Master’s specialisations

1 Language and Communication

Understanding and producing language: more complicated than you think

How do people understand a simple sentence? How do they recognise separate words in running speech? How do they distinguish separate words when the acoustic signal does not contain any spaces? And what about language production? How do people produce a simple sentence? A mature language user has a vocabulary of about three to forty thousand words. Speech is produced at a speed of three to five words per second. So, how is it possible that, in such an amazingly short space of time, people can select the correct words, put them in the correct order and grammatical form, and pronounce them intelligently?

Listening and speaking seem to be natural accomplishments. They are skills you normally hardly ever think about, which is strange because they involve a unique human ability that is acquired in the first few years of life. The acquisition and comprehension of language is based on extremely complex cognitive processes, which are not yet entirely understood. It is these processes that form the psycholinguistics’ field of study.

2 Perception, Action, and Control

Targeted action: more than meets the eye

How do people pick out their own glass of beer from all the other glasses at the bar? And how do they find their way around a building? How do people walk from one room to the other – and to what extent can you do this with your eyes closed? Catching a ball, picking up a cup, writing a sentence, choosing a meal: all these are targeted actions that people often perform without thinking. For patients who suffered a stroke, these automatic actions do not come naturally any more, and are extremely difficult to perform. Why is that? What cognitive and brain processes play a role in these actions? That is what researchers who study Perception, Action and Control want to discover.

Close cooperation between disciplines

Perception, Action and Control is a central research area within different faculties of Radboud University. It is aimed at the three basic components of current cognitive neuroscience: modelling (e.g. in artificial intelligence and physics), designing and conducting behavioural studies (e.g. in psychology) and measuring the biological foundation of behaviour. The various research groups of the Donders Institute within the research theme Perception, Action and Control use a wide range of modern research facilities, which enables them to provide natural stimuli and measure complex everyday behaviour. The close cooperation between the different disciplines also characterises the content of the courses in this specialisation.

Bilingualism

During my bachelor’s I wanted to know why things work the way they do, I was very interested in finding out about the workings behind brain processes. I chose Cognitive Neuroscience so I can do fundamental research into brain processes, and language processing in particular. Being bilingual myself I have been fascinated by language processing and want to know, among other things, how bilingual people process things differently from non-bilingual people.

A challenging programme

I am now in my first year of the Master’s programme and have already been taken part in the latest, state-of-the-art research in the field of language and communication. Researchers here are very motivated and good in what they do. I’m getting acquainted with current research, as well as learning about different research techniques and paradigms. Not only do I learn what is already out there, but I also learn a lot about how to challenge myself to find out more.

During lectures students are challenged and motivated to think critically for themselves and to take part in discussions. Teachers welcome the input from students, and are willing to help and answer questions.

Also, as a student of this programme, I have the opportunity to pursue the subjects I find most interesting. For example, I chose my three lab-rotations -short internships in the first year- by sending an email to the teachers of the subjects I find most interesting. For example, I chose my three lab-rotations -short internships in the first year- by sending an email to the teachers of the subjects I find most interesting. For example, I chose my three lab-rotations -short internships in the first year- by sending an email to the teachers of the subjects I find most interesting. For example, I chose my three lab-rotations -short internships in the first year- by sending an email to the teachers of the subjects I find most interesting. For example, I chose my three lab-rotations -short internships in the first year- by sending an email to the teachers of the subjects I find most interesting.

In this Master’s programme, I can focus even more on studying the human brain as a complex mechanism. I chose the specialisation Perception, Action and Control, which is most related to my interest: seeing the brain as a biological system that integrates information to enable us to act. In this programme, I also explore other research fields. Not only the biological side of things, but also the physical side of MRI machines, or the mathematics behind Artificial intelligence (computational) cognitive psychology behind decision making and philosophy. All these research fields come together in this specialisation. Students have the freedom to specialise in what they are interested in. As long as you are motivated, you have many options to discover new areas. I find it unique to work on something as unique as the human brain in a truly interdisciplinary team; students really get different perspectives.

Internship – no longer stuck to the ground

I am currently a second year student and my internship is at the biophysics department of the Donders Institute where I take part in a research project to investigate the use of wearable and smart technology that can aid people with Parkinson’s disease. More specifically, I study the use of smart glasses as an aid for walking. Parkinson’s patients sometimes suffer from a symptom called freezing of gait, where they cannot start their walking. By means of smart technology, we can resolve these symptoms. It can help people if they have issues in their environment that they can aim for. We try to display this by using augmented reality glasses. The use of smart technology in this domain is new and can be used anywhere.

Even though my internship is in the Netherlands, it feels like a truly international environment. You find different nationalities from around the world here. The students have a lot of time to focus on their studies and their internship, as we have become one friendly community.

Broad development

CNS is a relatively small programme where teachers have time for intimate teaching as well as developing their students’ experience in using experimental techniques. They have cues in their environment that they can aim for. We try to display this by using augmented reality glasses. The use of smart technology in this domain is new and can be used anywhere.
Career Prospects
After completing the Master’s specialisation in Perception, Action and Control, you will have experience in current research and analysis techniques in perception, motor research, and decision-making, using research techniques from psychophysics and brain imaging. This will enable you to apply models of perception, sensorimotor control, and complex choice in your future research. With this background you may find a position as a PhD student or in industry research in the Netherlands or abroad.

3 Plasticity and Memory
The connection between the brain and cognition
How does your brain enable you to remember certain events? How does your brain adapt to certain changes, such as a haemorrhage or other forms of damage? How do you distinguish between important and relatively unimportant information in the world around you? And how does the consolidation of newly acquired memories work during sleep? These are just a few of the questions that scientists in the domain of Plasticity and Memory would like to see answered. In this research theme researchers tackle the mechanistic underpinnings and behavioural consequences of long-term changes in neural structure and function. More specifically, the aim is to unravel how neuromplasticity supports development during childhood, adaptation to environmental challenges, and learning and memory throughout life span. In addition to fundamental research, this group also focuses on topics related to Alzheimer’s disease, neurodevelopmental and stress-related disorders.

Neurocomputation in Nijmegen: the cutting edge
Radboud University and the Radboud University Medical Centre (Radboudumc) both have an outstanding reputation in the domain of Plasticity and Memory. The Plasticity and Memory theme truly realized a bench to bedside approach and is therefore integrated with clinical subthemes of the Radboud University Medical Center.

Career Prospects
After completing the Master’s specialisation in Plasticity and Memory, you will be able to conduct neuroimaging and neurobiological research. You will know a lot about anatomical and neurophysiological aspects of the human brain and theoretical cognition/neurocognition models. This will enable you to conduct research into the neurofunctional architecture of cognitive key functions, for example in the context of a PhD project at a research institute or academic university.

4 Neural Computation and Neurotechnology
Communicating networks: connecting the dots
Our perception of the outside world, as well as our deepest, most private thoughts are just patterns of electrochemical activity generated by a massive network of interconnected neurons. Within this network, information travels and is processed from node to node. Mental health requires these brain networks to be effective. If they are not, or breakdown all together, brain diseases such as schizophrenia, attention-deficit disorders, or dementia may ensue. Recent technological breakthroughs in experiment and theory make it possible to measure, characterise, and ultimately understand these brain networks. As such, research in this area is poised to make major contributions to the treatment of brain diseases as well as lead to fundamental insights into how information is represented and processed in the intact brain and how the brain learns.

Breakthrough research
The specialisation Neural Computation and Neurotechnology focuses on brain networks ranging from the smallest scale (communication between individual neurons) up to the largest scale (communication between different brain areas). Researchers at the Donders Institute have proposed a powerful principle called ‘Communication through coherence,’ which holds that fast brain oscillations are modulated so as to line-up neurons for fast and accurate information processing. Experiments have confirmed this hypothesis in a number of neural systems on scales ranging from neuron pairs to whole brain areas.

Career Prospects
After completing the Master’s specialisation in Neural Computation and Neurotechnology you will be able to study brain networks and will understand the processes involved in coherent brain activity that subserves neuronal communication. You will be able to apply for a wide range of research projects, ranging from computational neuroscience, neuroinformatics, machine learning to psychology, neuromaging and systems neuroscience. These skills, in combination with an understanding of communication processes in the brain are invaluable for a PhD position in this domain and (non-)industrial jobs, e.g. related to artificial intelligence, brain-computer interface etc.
General information

What prior qualifications do you need?

You may apply for the Master's programme in Cognitive Neuroscience if you have a Bachelor's degree in Linguistics, Physics, Mathematics, Biomedical Sciences, Behavioural Sciences (e.g. Psychology), or a related Bachelor's programme. For this selective Master's programme, every applicant is assessed individually to ascertain whether he/she is eligible to participate in the programme. Further information can be found on our website: www.ru.nl/masters/cns

If you are interested, please call the secretariat's office (+31(0)24 662 66 59), or send an email to: cns@cns.ru.nl

The Master's programme is open to Dutch as well as international students.

How to enrol for the Master's programme

The Admission Board of the Master's programme in Cognitive Neurosciences determines whether or not you will be admitted to the Master's programme. An interview (real life or Skype) may be part of the selection process. After you have been accepted to the programme by the Admission Board, you will need to complete the formal registration to Radboud University online. On the basis of your documents the Radboud Student Affairs Office will determine whether you meet the general requirements to be admitted to an academic study programme at the Master's level. For more information on the application procedure, the general and specialisation specific requirements, including English proficiency, please visit: www.ru.nl/masters/cns

Tuition fees

Students from the European Economic Area (EEA) which includes all EU countries, Iceland, Lichtenstein and Norway, pay the same tuition fee as Dutch students, for the academic year 2019/2020: €2,083 per year. For students from outside the EEA, the fee is €12,645 per year in 2019/2020. For the most up to date tuition fees, please visit: www.ru.nl/masters/tuition

Scholarships

The Master's programme in Cognitive Neuroscience has been accredited by the Dutch authorities. This means that Dutch students enrolled in this programme may apply for a government scholarship. For more details, please go to: www.duo.nl

Foreign students are encouraged to find a scholarship through: www.studyinholland.nl/scholarships

If you are a student from outside the EEA, you may be eligible to apply for the Radboud Scholarship Programme. For more information on this scholarship programme please visit: www.ru.nl/rsp

Alumni quotes

Patricia Romero Verdugo
PHD candidate at Donders Institute

“I enjoyed that the programme was so interdisciplinary: we had lecturers and classmates from different backgrounds (such as physics, biology, and psychology). It was inspiring and fun to collaborate and learn from each other’s expertise.”

Rowan Sommers
PhD candidate at Max Planck Institute

“The best thing about the CNS Master is that it allowed me to acquire both skills and knowledge from an incredible variety of disciplines. My brain has never been stimulated as much as it was during the CNS Master.”

Danielle Tump
Developer and tester at MindAffect in Nijmegen

“The freedom and opportunities to broaden your knowledge and experience in the direction you find most interesting.”

Nic Bechet
PhD candidate at Lund University, Sweden

“The combination of specialised neuroscience training coupled with the opportunity to apply this knowledge whilst working in an exciting research group really stood out for me.”

Giulia Lorenzon
Italian Civilian Service volunteer for psychological support in Ecuador

“Not a simple Master, rather a school of life. It made me discover and cross limits that I couldn’t even imagine. It pushed me to the edge of my potential, and made my family international.”

programme outline

Overview of the Cognitive Neuroscience programme. In two years, 120EC needs to be obtained. The first year is largely dedicated to coursework, while the second year mainly comprises the research internship, culminating in the writing of the Master's thesis.

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
<th>SECOND YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical training</td>
<td>Practical training</td>
</tr>
<tr>
<td>General (compulsory)</td>
<td>General (compulsory)</td>
</tr>
<tr>
<td>Trends in cognitive neuroscience 6EC</td>
<td>Practical training & Thesis 45EC</td>
</tr>
<tr>
<td>Neuroimaging I 6EC</td>
<td></td>
</tr>
<tr>
<td>Neurophilosophy 6EC</td>
<td></td>
</tr>
<tr>
<td>Lab rotations 3EC</td>
<td></td>
</tr>
<tr>
<td>Neuroimaging II (choose one) 6EC</td>
<td>Electrophysiological methods 3EC</td>
</tr>
<tr>
<td>Motor control and brain-related research methods 3EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemodynamic methods</td>
</tr>
<tr>
<td></td>
<td>Specialisation</td>
</tr>
<tr>
<td></td>
<td>Core courses 90EC</td>
</tr>
<tr>
<td></td>
<td>Free choice (elective courses) 30EC</td>
</tr>
<tr>
<td></td>
<td>Selective training (choose 2 out of 6)</td>
</tr>
<tr>
<td>Neuroanatomy 9EC</td>
<td>Practical ERP training 3EC</td>
</tr>
<tr>
<td>Advanced maths 9EC</td>
<td>Academic writing 3EC</td>
</tr>
<tr>
<td>Basic mathematics 9EC</td>
<td>MATLAB mathematical programming 3EC</td>
</tr>
<tr>
<td>First year</td>
<td>Total</td>
</tr>
<tr>
<td>84EC</td>
<td>120EC</td>
</tr>
</tbody>
</table>

Figure A. Overview of the Cognitive Neuroscience programme. In two years, 120EC needs to be obtained. The first year is largely dedicated to coursework, while the second year mainly comprises the research internship, culminating in the writing of the Master's thesis.
Useful addresses

Secretariat
P.O. Box 9104
6500 HE Nijmegen
The Netherlands

Visiting address
B.02.39 – Spinoza Building
Montessorilaan 3
6525 HR Nijmegen
T: +31 24 361 16 69
E: cns@cns.ru.nl or e.janssen@donders.ru.nl
I: www.ru.nl/masters/cns

Programme Coordinator
Dr. Arno Koning
Visiting address
B.02.35 – Spinoza Building
Montessorilaan 3
6525 HR Nijmegen
T: +31 24 361 26 15
E: a.koning@donders.ru.nl

Radboud University
Central Student Office
P.O. Box 9102
6500 HC Nijmegen
The Netherlands
T: +31 24 361 23 45
E: balie@dsz.ru.nl
I: www.ru.nl

International Office
P.O. Box 9102
6525 HP Nijmegen
The Netherlands
T: +31 24 361 60 55
E: internationaloffice@io.ru.nl
I: www.ru.nl/internationalOffice